Nuprl Lemma : eu-seg2_wf

[e:EuclideanStructure]. ∀[s:Segment].  (s.2 ∈ Point)


Proof




Definitions occuring in Statement :  eu-seg2: s.2 eu-segment: Segment eu-point: Point euclidean-structure: EuclideanStructure uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eu-seg2: s.2 eu-segment: Segment pi2: snd(t)
Lemmas referenced :  eu-segment_wf euclidean-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination isect_memberEquality because_Cache

Latex:
\mforall{}[e:EuclideanStructure].  \mforall{}[s:Segment].    (s.2  \mmember{}  Point)



Date html generated: 2016_05_18-AM-06_36_22
Last ObjectModification: 2015_12_28-AM-09_26_03

Theory : euclidean!geometry


Home Index