Nuprl Lemma : eu-O_wf

e:EuclideanStructure. (O ∈ Point)


Proof




Definitions occuring in Statement :  eu-O: O eu-point: Point euclidean-structure: EuclideanStructure all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T eu-O: O uall: [x:A]. B[x] spreadn: spread3 and: P ∧ Q prop: implies:  Q pi1: fst(t)
Lemmas referenced :  eu-nontrivial_wf eu-point_wf not_wf equal_wf eu-colinear_wf euclidean-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setEquality productEquality because_Cache productElimination sqequalRule setElimination rename equalityEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination

Latex:
\mforall{}e:EuclideanStructure.  (O  \mmember{}  Point)



Date html generated: 2016_05_18-AM-06_32_35
Last ObjectModification: 2015_12_28-AM-09_28_16

Theory : euclidean!geometry


Home Index