Nuprl Lemma : eu-not-colinear-OXY

[e:EuclideanStructure]. ((¬(O X ∈ Point)) ∧ Colinear(O;X;Y)))


Proof




Definitions occuring in Statement :  eu-Y: Y eu-X: X eu-O: O eu-colinear: Colinear(a;b;c) eu-point: Point euclidean-structure: EuclideanStructure uall: [x:A]. B[x] not: ¬A and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eu-Y: Y eu-X: X eu-O: O spreadn: spread3 and: P ∧ Q prop: all: x:A. B[x] implies:  Q not: ¬A false: False pi1: fst(t) pi2: snd(t)
Lemmas referenced :  eu-nontrivial_wf eu-point_wf not_wf equal_wf eu-colinear_wf eu-O_wf eu-X_wf eu-Y_wf euclidean-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setEquality productEquality because_Cache productElimination sqequalRule lambdaFormation equalityEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination independent_pairEquality lambdaEquality voidElimination independent_pairFormation setElimination rename

Latex:
\mforall{}[e:EuclideanStructure].  ((\mneg{}(O  =  X))  \mwedge{}  (\mneg{}Colinear(O;X;Y)))



Date html generated: 2016_05_18-AM-06_32_52
Last ObjectModification: 2015_12_28-AM-09_28_06

Theory : euclidean!geometry


Home Index