Nuprl Lemma : eu-not-colinear-OXY
∀[e:EuclideanStructure]. ((¬(O = X ∈ Point)) ∧ (¬Colinear(O;X;Y)))
Proof
Definitions occuring in Statement : 
eu-Y: Y
, 
eu-X: X
, 
eu-O: O
, 
eu-colinear: Colinear(a;b;c)
, 
eu-point: Point
, 
euclidean-structure: EuclideanStructure
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
eu-Y: Y
, 
eu-X: X
, 
eu-O: O
, 
spreadn: spread3, 
and: P ∧ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
pi1: fst(t)
, 
pi2: snd(t)
Lemmas referenced : 
eu-nontrivial_wf, 
eu-point_wf, 
not_wf, 
equal_wf, 
eu-colinear_wf, 
eu-O_wf, 
eu-X_wf, 
eu-Y_wf, 
euclidean-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setEquality, 
productEquality, 
because_Cache, 
productElimination, 
sqequalRule, 
lambdaFormation, 
equalityEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairEquality, 
lambdaEquality, 
voidElimination, 
independent_pairFormation, 
setElimination, 
rename
Latex:
\mforall{}[e:EuclideanStructure].  ((\mneg{}(O  =  X))  \mwedge{}  (\mneg{}Colinear(O;X;Y)))
Date html generated:
2016_05_18-AM-06_32_52
Last ObjectModification:
2015_12_28-AM-09_28_06
Theory : euclidean!geometry
Home
Index