Nuprl Lemma : eu-Y_wf

[e:EuclideanStructure]. (Y ∈ Point)


Proof




Definitions occuring in Statement :  eu-Y: Y eu-point: Point euclidean-structure: EuclideanStructure uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eu-Y: Y spreadn: spread3 and: P ∧ Q prop: all: x:A. B[x] implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  eu-nontrivial_wf eu-point_wf not_wf equal_wf eu-colinear_wf pi2_wf euclidean-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setEquality productEquality because_Cache productElimination sqequalRule lambdaFormation lambdaEquality setElimination rename equalityEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomEquality

Latex:
\mforall{}[e:EuclideanStructure].  (Y  \mmember{}  Point)



Date html generated: 2016_05_18-AM-06_32_41
Last ObjectModification: 2015_12_28-AM-09_28_12

Theory : euclidean!geometry


Home Index