Nuprl Lemma : eu-X_wf

e:EuclideanStructure. (X ∈ Point)


Proof




Definitions occuring in Statement :  eu-X: X eu-point: Point euclidean-structure: EuclideanStructure all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T eu-X: X uall: [x:A]. B[x] spreadn: spread3 and: P ∧ Q prop: implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a top: Top
Lemmas referenced :  eu-nontrivial_wf eu-point_wf not_wf equal_wf eu-colinear_wf pi1_wf_top pi2_wf subtype_rel_product top_wf euclidean-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setEquality productEquality because_Cache productElimination sqequalRule lambdaEquality setElimination rename applyEquality independent_isectElimination isect_memberEquality voidElimination voidEquality equalityEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination

Latex:
\mforall{}e:EuclideanStructure.  (X  \mmember{}  Point)



Date html generated: 2016_05_18-AM-06_32_38
Last ObjectModification: 2015_12_28-AM-09_28_13

Theory : euclidean!geometry


Home Index