Nuprl Lemma : eu-seg-congruent-iff-length

e:EuclideanPlane. ∀[s,t:Segment].  uiff(s ≡ t;|s| |t| ∈ {p:Point| O_X_p} )


Proof




Definitions occuring in Statement :  eu-length: |s| eu-seg-congruent: s1 ≡ s2 eu-segment: Segment euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-X: X eu-O: O eu-point: Point uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a eu-length: |s| member: t ∈ T euclidean-plane: EuclideanPlane prop: eu-seg-congruent: s1 ≡ s2 rev_uimplies: rev_uimplies(P;Q) sq_stable: SqStable(P) implies:  Q squash: T
Lemmas referenced :  sq_stable__eu-congruent eu-extend-equal-iff-congruent eu-length_wf eu-seg-congruent_wf eu-between-eq_wf eu-seg2_wf eu-seg1_wf eu-point_wf equal_wf not_wf eu-X_wf eu-not-colinear-OXY eu-O_wf eu-extend-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation independent_pairFormation cut dependent_set_memberEquality sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin because_Cache isectElimination setElimination rename hypothesisEquality hypothesis productElimination introduction axiomEquality setEquality independent_isectElimination independent_functionElimination applyEquality lambdaEquality imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[s,t:Segment].    uiff(s  \mequiv{}  t;|s|  =  |t|)



Date html generated: 2016_05_18-AM-06_37_35
Last ObjectModification: 2016_01_16-PM-10_31_11

Theory : euclidean!geometry


Home Index