Nuprl Lemma : eu-seg-congruent-iff-length
∀e:EuclideanPlane. ∀[s,t:Segment].  uiff(s ≡ t;|s| = |t| ∈ {p:Point| O_X_p} )
Proof
Definitions occuring in Statement : 
eu-length: |s|, 
eu-seg-congruent: s1 ≡ s2, 
eu-segment: Segment, 
euclidean-plane: EuclideanPlane, 
eu-between-eq: a_b_c, 
eu-X: X, 
eu-O: O, 
eu-point: Point, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
set: {x:A| B[x]} , 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
eu-length: |s|, 
member: t ∈ T, 
euclidean-plane: EuclideanPlane, 
prop: ℙ, 
eu-seg-congruent: s1 ≡ s2, 
rev_uimplies: rev_uimplies(P;Q), 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
squash: ↓T
Lemmas referenced : 
sq_stable__eu-congruent, 
eu-extend-equal-iff-congruent, 
eu-length_wf, 
eu-seg-congruent_wf, 
eu-between-eq_wf, 
eu-seg2_wf, 
eu-seg1_wf, 
eu-point_wf, 
equal_wf, 
not_wf, 
eu-X_wf, 
eu-not-colinear-OXY, 
eu-O_wf, 
eu-extend-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
independent_pairFormation, 
cut, 
dependent_set_memberEquality, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
because_Cache, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
productElimination, 
introduction, 
axiomEquality, 
setEquality, 
independent_isectElimination, 
independent_functionElimination, 
applyEquality, 
lambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[s,t:Segment].    uiff(s  \mequiv{}  t;|s|  =  |t|)
Date html generated:
2016_05_18-AM-06_37_35
Last ObjectModification:
2016_01_16-PM-10_31_11
Theory : euclidean!geometry
Home
Index