Nuprl Lemma : eu-seg-congruent_wf

[e:EuclideanStructure]. ∀[s1,s2:Segment].  (s1 ≡ s2 ∈ ℙ)


Proof




Definitions occuring in Statement :  eu-seg-congruent: s1 ≡ s2 eu-segment: Segment euclidean-structure: EuclideanStructure uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eu-seg-congruent: s1 ≡ s2
Lemmas referenced :  eu-congruent_wf eu-seg1_wf eu-seg2_wf eu-segment_wf euclidean-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[e:EuclideanStructure].  \mforall{}[s1,s2:Segment].    (s1  \mequiv{}  s2  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-06_36_40
Last ObjectModification: 2015_12_28-AM-09_25_50

Theory : euclidean!geometry


Home Index