Nuprl Lemma : eu-seg-congruent_wf
∀[e:EuclideanStructure]. ∀[s1,s2:Segment].  (s1 ≡ s2 ∈ ℙ)
Proof
Definitions occuring in Statement : 
eu-seg-congruent: s1 ≡ s2
, 
eu-segment: Segment
, 
euclidean-structure: EuclideanStructure
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
eu-seg-congruent: s1 ≡ s2
Lemmas referenced : 
eu-congruent_wf, 
eu-seg1_wf, 
eu-seg2_wf, 
eu-segment_wf, 
euclidean-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[e:EuclideanStructure].  \mforall{}[s1,s2:Segment].    (s1  \mequiv{}  s2  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-06_36_40
Last ObjectModification:
2015_12_28-AM-09_25_50
Theory : euclidean!geometry
Home
Index