Nuprl Lemma : eu-extend-equal-iff-congruent
∀e:EuclideanPlane
  ∀[a,b,c,d,c',d':Point].  uiff((extend ab by cd) = (extend ab by c'd') ∈ Point;cd=c'd') supposing ¬(a = b ∈ Point)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-extend: (extend ab by cd)
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
euclidean-plane: EuclideanPlane
, 
prop: ℙ
, 
sq_stable: SqStable(P)
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
squash: ↓T
, 
cand: A c∧ B
Lemmas referenced : 
eu-point_wf, 
sq_stable__uiff, 
equal_wf, 
eu-extend_wf, 
not_wf, 
eu-congruent_wf, 
sq_stable__equal, 
sq_stable__eu-congruent, 
eu-extend-property, 
eu-between-eq_wf, 
euclidean-plane_wf, 
eu-congruent-symmetry, 
and_wf, 
eu-congruent-transitivity, 
eu-congruent-refl, 
eu-five-segment, 
eu-congruence-identity, 
eu-three-segment
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
equalityEquality, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
because_Cache, 
dependent_set_memberEquality, 
independent_functionElimination, 
productElimination, 
independent_pairFormation, 
axiomEquality, 
productEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_isectElimination, 
applyEquality, 
setEquality, 
hyp_replacement, 
Error :applyLambdaEquality
Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[a,b,c,d,c',d':Point].    uiff((extend  ab  by  cd)  =  (extend  ab  by  c'd');cd=c'd')  supposing  \mneg{}(a  =  b)
Date html generated:
2016_10_26-AM-07_41_10
Last ObjectModification:
2016_07_12-AM-08_07_21
Theory : euclidean!geometry
Home
Index