Nuprl Lemma : eu-five-segment
∀e:EuclideanPlane
  ∀[a,b,c,d,A,B,C,D:Point].
    (cd=CD) supposing (bd=BD and ad=AD and bc=BC and ab=AB and A_B_C and a_b_c and (¬(a = b ∈ Point)))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
euclidean-plane: EuclideanPlane
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_apply: x[s]
, 
euclidean-axioms: euclidean-axioms(e)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
sq_stable__eu-congruent, 
sq_stable__uall, 
eu-congruent_wf, 
eu-between-eq_wf, 
equal_wf, 
not_wf, 
isect_wf, 
uall_wf, 
eu-point_wf, 
euclidean-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
lemma_by_obid, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
sqequalRule, 
because_Cache, 
equalityEquality, 
productElimination, 
independent_functionElimination, 
isect_memberFormation, 
introduction, 
dependent_functionElimination, 
voidElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[a,b,c,d,A,B,C,D:Point].
        (cd=CD)  supposing  (bd=BD  and  ad=AD  and  bc=BC  and  ab=AB  and  A\_B\_C  and  a\_b\_c  and  (\mneg{}(a  =  b)))
Date html generated:
2016_05_18-AM-06_35_15
Last ObjectModification:
2016_01_16-PM-10_31_29
Theory : euclidean!geometry
Home
Index