Nuprl Lemma : eu-three-segment
∀e:EuclideanPlane. ∀[a,b,c,A,B,C:Point].  (ac=AC) supposing (bc=BC and ab=AB and A_B_C and a_b_c and (¬(a = b ∈ Point)))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
euclidean-plane: EuclideanPlane
, 
prop: ℙ
Lemmas referenced : 
eu-five-segment, 
eu-point_wf, 
eu-congruent_wf, 
eu-between-eq_wf, 
not_wf, 
equal_wf, 
euclidean-plane_wf, 
eu-congruent-trivial, 
eu-congruent-comm
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isect_memberFormation, 
isectElimination, 
introduction, 
sqequalRule, 
lambdaEquality, 
voidElimination, 
equalityEquality, 
setElimination, 
rename, 
independent_isectElimination, 
because_Cache
Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[a,b,c,A,B,C:Point].    (ac=AC)  supposing  (bc=BC  and  ab=AB  and  A\_B\_C  and  a\_b\_c  and  (\mneg{}(a  =  b)))
Date html generated:
2016_05_18-AM-06_35_20
Last ObjectModification:
2015_12_28-AM-09_26_22
Theory : euclidean!geometry
Home
Index