Nuprl Lemma : eu-three-segment

e:EuclideanPlane. ∀[a,b,c,A,B,C:Point].  (ac=AC) supposing (bc=BC and ab=AB and A_B_C and a_b_c and (a b ∈ Point)))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-congruent: ab=cd eu-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a not: ¬A implies:  Q false: False euclidean-plane: EuclideanPlane prop:
Lemmas referenced :  eu-five-segment eu-point_wf eu-congruent_wf eu-between-eq_wf not_wf equal_wf euclidean-plane_wf eu-congruent-trivial eu-congruent-comm
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isect_memberFormation isectElimination introduction sqequalRule lambdaEquality voidElimination equalityEquality setElimination rename independent_isectElimination because_Cache

Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[a,b,c,A,B,C:Point].    (ac=AC)  supposing  (bc=BC  and  ab=AB  and  A\_B\_C  and  a\_b\_c  and  (\mneg{}(a  =  b)))



Date html generated: 2016_05_18-AM-06_35_20
Last ObjectModification: 2015_12_28-AM-09_26_22

Theory : euclidean!geometry


Home Index