Nuprl Lemma : eu-congruent-comm

e:EuclideanPlane. ∀[a,b,c,d:Point].  ba=dc supposing ab=cd


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-congruent: ab=cd eu-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T prop: euclidean-plane: EuclideanPlane
Lemmas referenced :  euclidean-plane_wf eu-point_wf eu-congruent_wf eu-congruent-right-comm eu-congruent-left-comm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination independent_isectElimination hypothesis because_Cache setElimination rename

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,d:Point].    ba=dc  supposing  ab=cd



Date html generated: 2016_05_18-AM-06_35_04
Last ObjectModification: 2016_04_28-PM-06_40_35

Theory : euclidean!geometry


Home Index