Nuprl Lemma : eu-mk-seg_wf
∀[e:EuclideanStructure]. ∀[a,b:Point].  (ab ∈ Segment)
Proof
Definitions occuring in Statement : 
eu-mk-seg: ab
, 
eu-segment: Segment
, 
eu-point: Point
, 
euclidean-structure: EuclideanStructure
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
eu-mk-seg: ab
, 
subtype_rel: A ⊆r B
, 
eu-segment: Segment
Lemmas referenced : 
eu-point_wf, 
euclidean-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
independent_pairEquality, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
sqequalHypSubstitution, 
productEquality, 
lemma_by_obid, 
isectElimination, 
thin, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[e:EuclideanStructure].  \mforall{}[a,b:Point].    (ab  \mmember{}  Segment)
Date html generated:
2016_05_18-AM-06_36_14
Last ObjectModification:
2015_12_28-AM-09_26_07
Theory : euclidean!geometry
Home
Index