Nuprl Lemma : eu-inner-five-segment
∀e:EuclideanPlane
  ∀[a,b,c,d,A,B,C,D:Point].  (bd=BD) supposing (cd=CD and ad=AD and bc=BC and ac=AC and A_B_C and a_b_c)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
euclidean-plane: EuclideanPlane
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
stable: Stable{P}
, 
not: ¬A
, 
prop: ℙ
, 
squash: ↓T
, 
guard: {T}
, 
and: P ∧ Q
, 
false: False
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
Lemmas referenced : 
sq_stable__eu-congruent, 
stable__eu-congruent, 
not_wf, 
eu-congruent_wf, 
eu-between-eq_wf, 
eu-point_wf, 
euclidean-plane_wf, 
eu-between-eq-same, 
eu-congruence-identity-sym, 
equal_wf, 
and_wf, 
false_wf, 
eu-extend-exists, 
eu-congruence-identity, 
eu-five-segment, 
eu-congruent-iff-length, 
eu-between-eq-symmetry, 
eu-between-eq-inner-trans, 
eu-length-flip
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
independent_functionElimination, 
independent_isectElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
promote_hyp, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyEquality, 
lambdaEquality, 
productElimination, 
setEquality, 
voidElimination, 
dependent_pairFormation, 
equalityTransitivity, 
equalityEquality, 
universeEquality, 
productEquality
Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[a,b,c,d,A,B,C,D:Point].
        (bd=BD)  supposing  (cd=CD  and  ad=AD  and  bc=BC  and  ac=AC  and  A\_B\_C  and  a\_b\_c)
Date html generated:
2016_10_26-AM-07_42_21
Last ObjectModification:
2016_07_12-AM-08_08_46
Theory : euclidean!geometry
Home
Index