Nuprl Lemma : eu-between-eq-same

[e:EuclideanPlane]. ∀[a,b:Point].  b ∈ Point supposing a_b_a


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-point: Point uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: euclidean-plane: EuclideanPlane all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q not: ¬A cand: c∧ B false: False
Lemmas referenced :  eu-between-eq_wf eu-point_wf euclidean-plane_wf eu-between-eq-def euclidean-point-eq not_wf equal_wf eu-between-same
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry dependent_functionElimination productElimination independent_functionElimination independent_isectElimination lambdaFormation independent_pairFormation voidElimination

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a,b:Point].    a  =  b  supposing  a\_b\_a



Date html generated: 2016_05_18-AM-06_34_22
Last ObjectModification: 2015_12_28-AM-09_27_40

Theory : euclidean!geometry


Home Index