Nuprl Lemma : euclidean-point-eq

[e:EuclideanPlane]. ∀[p,q:Point].  q ∈ Point supposing ¬¬(p q ∈ Point)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-point: Point uimplies: supposing a uall: [x:A]. B[x] not: ¬A equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a stable: Stable{P} not: ¬A implies:  Q false: False prop: euclidean-plane: EuclideanPlane
Lemmas referenced :  stable_point-eq not_wf equal_wf eu-point_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination lambdaFormation independent_functionElimination voidElimination setElimination rename sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[p,q:Point].    p  =  q  supposing  \mneg{}\mneg{}(p  =  q)



Date html generated: 2016_05_18-AM-06_34_05
Last ObjectModification: 2015_12_28-AM-09_27_29

Theory : euclidean!geometry


Home Index