Nuprl Lemma : euclidean-point-eq
∀[e:EuclideanPlane]. ∀[p,q:Point].  p = q ∈ Point supposing ¬¬(p = q ∈ Point)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
stable: Stable{P}
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
euclidean-plane: EuclideanPlane
Lemmas referenced : 
stable_point-eq, 
not_wf, 
equal_wf, 
eu-point_wf, 
euclidean-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
lambdaFormation, 
independent_functionElimination, 
voidElimination, 
setElimination, 
rename, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[p,q:Point].    p  =  q  supposing  \mneg{}\mneg{}(p  =  q)
Date html generated:
2016_05_18-AM-06_34_05
Last ObjectModification:
2015_12_28-AM-09_27_29
Theory : euclidean!geometry
Home
Index