Nuprl Lemma : eu-between-eq-symmetry

e:EuclideanPlane. ∀[a,b,c:Point].  c_b_a supposing a_b_c


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T euclidean-plane: EuclideanPlane sq_stable: SqStable(P) implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q not: ¬A cand: c∧ B false: False prop: squash: T
Lemmas referenced :  euclidean-plane_wf eu-between-eq_wf eu-point_wf equal_wf not_wf and_wf eu-between_wf eu-between-sym eu-between-eq-def sq_stable__eu-between-eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality isectElimination hypothesis independent_functionElimination introduction because_Cache productElimination independent_pairFormation independent_isectElimination voidElimination sqequalRule imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c:Point].    c\_b\_a  supposing  a\_b\_c



Date html generated: 2016_05_18-AM-06_34_33
Last ObjectModification: 2016_01_16-PM-10_31_26

Theory : euclidean!geometry


Home Index