Nuprl Lemma : eu-between-eq-symmetry
∀e:EuclideanPlane. ∀[a,b,c:Point].  c_b_a supposing a_b_c
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
euclidean-plane: EuclideanPlane
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
cand: A c∧ B
, 
false: False
, 
prop: ℙ
, 
squash: ↓T
Lemmas referenced : 
euclidean-plane_wf, 
eu-between-eq_wf, 
eu-point_wf, 
equal_wf, 
not_wf, 
and_wf, 
eu-between_wf, 
eu-between-sym, 
eu-between-eq-def, 
sq_stable__eu-between-eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
independent_functionElimination, 
introduction, 
because_Cache, 
productElimination, 
independent_pairFormation, 
independent_isectElimination, 
voidElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c:Point].    c\_b\_a  supposing  a\_b\_c
Date html generated:
2016_05_18-AM-06_34_33
Last ObjectModification:
2016_01_16-PM-10_31_26
Theory : euclidean!geometry
Home
Index