Nuprl Lemma : eu-between-sym
∀e:EuclideanPlane. ∀[a,b,c:Point].  a-b-c supposing c-b-a
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane, 
eu-between: a-b-c, 
eu-point: Point, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
euclidean-plane: EuclideanPlane, 
member: t ∈ T, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
squash: ↓T, 
prop: ℙ, 
guard: {T}, 
euclidean-axioms: euclidean-axioms(e), 
and: P ∧ Q
Lemmas referenced : 
euclidean-plane_wf, 
eu-point_wf, 
eu-between_wf, 
sq_stable__eu-between
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
independent_functionElimination, 
introduction, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
independent_isectElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c:Point].    a-b-c  supposing  c-b-a
Date html generated:
2016_05_18-AM-06_33_50
Last ObjectModification:
2016_01_16-PM-10_31_50
Theory : euclidean!geometry
Home
Index