Nuprl Lemma : eu-congruence-identity-sym

[e:EuclideanPlane]. ∀[a,b,c:Point].  b ∈ Point supposing cc=ab


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-congruent: ab=cd eu-point: Point uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: euclidean-plane: EuclideanPlane all: x:A. B[x]
Lemmas referenced :  eu-congruent_wf eu-point_wf euclidean-plane_wf eu-congruent-symmetry eu-congruence-identity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry dependent_functionElimination independent_isectElimination

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a,b,c:Point].    a  =  b  supposing  cc=ab



Date html generated: 2016_05_18-AM-06_35_09
Last ObjectModification: 2015_12_28-AM-09_26_14

Theory : euclidean!geometry


Home Index