Nuprl Lemma : Euclid-Prop1-left-ext

e:EuclideanPlane. ∀a:Point. ∀b:{b:Point| a ≠ b} .  (∃c:Point [(((cb ≅ ab ∧ ca ≅ ba) ∧ ca ≅ cb) ∧ leftof ab)])


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-left: leftof bc geo-congruent: ab ≅ cd geo-sep: a ≠ b geo-point: Point all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  member: t ∈ T eqtri: Δ(a;b) Euclid-Prop1-left geo-CC-2 sq_stable__geo-sep geo-congruent-refl
Lemmas referenced :  Euclid-Prop1-left geo-CC-2 sq_stable__geo-sep geo-congruent-refl
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a:Point.  \mforall{}b:\{b:Point|  a  \mneq{}  b\}  .
    (\mexists{}c:Point  [(((cb  \mcong{}  ab  \mwedge{}  ca  \mcong{}  ba)  \mwedge{}  ca  \mcong{}  cb)  \mwedge{}  c  leftof  ab)])



Date html generated: 2018_05_22-AM-11_53_45
Last ObjectModification: 2018_03_30-AM-10_01_33

Theory : euclidean!plane!geometry


Home Index