Nuprl Lemma : Euclid-Prop27

e:EuclideanPlane. ∀a,b,c,d,x,y:Point.
  (((Colinear(x;a;b) ∧ Colinear(y;c;d)) ∧ (a b ∧ d) ∧ leftof yx ∧ leftof xy ∧ axy ≅a cyx)
   geo-parallel-points(e;a;b;c;d))


Proof




Definitions occuring in Statement :  geo-parallel-points: geo-parallel-points(e;a;b;c;d) geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) geo-left: leftof bc geo-sep: b geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q geo-parallel-points: geo-parallel-points(e;a;b;c;d) not: ¬A false: False exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: guard: {T} uimplies: supposing a basic-geometry: BasicGeometry sq_stable: SqStable(P) l_member: (x ∈ l) nat: le: A ≤ B less_than': less_than'(a;b) top: Top select: L[n] cons: [a b] subtract: m cand: c∧ B less_than: a < b squash: T true: True ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) basic-geometry-: BasicGeometry- append: as bs so_lambda: so_lambda3 so_apply: x[s1;s2;s3] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k geo-eq: a ≡ b rev_implies:  Q iff: ⇐⇒ Q geo-colinear: Colinear(a;b;c) geo-cong-angle: abc ≅a xyz geo-out: out(p ab)

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d,x,y:Point.
    (((Colinear(x;a;b)  \mwedge{}  Colinear(y;c;d))  \mwedge{}  (a  \#  b  \mwedge{}  c  \#  d)  \mwedge{}  a  leftof  yx  \mwedge{}  c  leftof  xy  \mwedge{}  axy  \mcong{}\msuba{}  cyx)
    {}\mRightarrow{}  geo-parallel-points(e;a;b;c;d))



Date html generated: 2020_05_20-AM-10_43_12
Last ObjectModification: 2019_12_03-AM-09_47_55

Theory : euclidean!plane!geometry


Home Index