Step
*
1
1
1
1
1
of Lemma
Prop22-inequality-to-triangle-construction
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. |ac| < |ab| + |bc|
6. |ab| < |ac| + |bc|
7. |bc| < |ac| + |ab|
8. a ≠ b
9. b ≠ c
10. c ≠ a
11. x : Point
12. b-a-x
13. ax ≅ OX
14. y : Point
15. a-b-y
16. by ≅ OX
17. c1 : Point
18. x-a-c1
19. ac1 ≅ ac
20. c2 : Point
21. y-b-c2
22. bc2 ≅ bc
23. c1' : Point
24. b-a-c1'
25. ac1' ≅ ac1
26. c2' : Point
27. a-b-c2'
28. bc2' ≅ bc2
29. c1'' : Point
30. a_b_c1''
31. bc1'' ≅ bc1
32. c2'' : Point
33. b_a_c2''
34. ac2'' ≅ ac2
35. a-c1-c2'
36. c2'_b_c2
37. out(c2' c2c1')
38. c2'_b_c2
39. |c2'c2| = |c2'b| + |bc2| ∈ Length
⊢ |c2'c2| < |c2'c1'|
BY
{ ((Assert c2'_b_c1' BY
Auto)
THEN (FLemma `geo-add-length-between` [-1] THENA Auto)
THEN (Assert b_a_c1' BY
Auto)
THEN FLemma `geo-add-length-between` [-1]
THEN Auto) }
1
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. |ac| < |ab| + |bc|
6. |ab| < |ac| + |bc|
7. |bc| < |ac| + |ab|
8. a ≠ b
9. b ≠ c
10. c ≠ a
11. x : Point
12. b-a-x
13. ax ≅ OX
14. y : Point
15. a-b-y
16. by ≅ OX
17. c1 : Point
18. x-a-c1
19. ac1 ≅ ac
20. c2 : Point
21. y-b-c2
22. bc2 ≅ bc
23. c1' : Point
24. b-a-c1'
25. ac1' ≅ ac1
26. c2' : Point
27. a-b-c2'
28. bc2' ≅ bc2
29. c1'' : Point
30. a_b_c1''
31. bc1'' ≅ bc1
32. c2'' : Point
33. b_a_c2''
34. ac2'' ≅ ac2
35. a-c1-c2'
36. c2'_b_c2
37. out(c2' c2c1')
38. c2'_b_c2
39. |c2'c2| = |c2'b| + |bc2| ∈ Length
40. c2'_b_c1'
41. |c2'c1'| = |c2'b| + |bc1'| ∈ Length
42. b_a_c1'
43. |bc1'| = |ba| + |ac1'| ∈ Length
⊢ |c2'c2| < |c2'c1'|
Latex:
Latex:
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. |ac| < |ab| + |bc|
6. |ab| < |ac| + |bc|
7. |bc| < |ac| + |ab|
8. a \mneq{} b
9. b \mneq{} c
10. c \mneq{} a
11. x : Point
12. b-a-x
13. ax \mcong{} OX
14. y : Point
15. a-b-y
16. by \mcong{} OX
17. c1 : Point
18. x-a-c1
19. ac1 \mcong{} ac
20. c2 : Point
21. y-b-c2
22. bc2 \mcong{} bc
23. c1' : Point
24. b-a-c1'
25. ac1' \mcong{} ac1
26. c2' : Point
27. a-b-c2'
28. bc2' \mcong{} bc2
29. c1'' : Point
30. a\_b\_c1''
31. bc1'' \mcong{} bc1
32. c2'' : Point
33. b\_a\_c2''
34. ac2'' \mcong{} ac2
35. a-c1-c2'
36. c2'\_b\_c2
37. out(c2' c2c1')
38. c2'\_b\_c2
39. |c2'c2| = |c2'b| + |bc2|
\mvdash{} |c2'c2| < |c2'c1'|
By
Latex:
((Assert c2'\_b\_c1' BY
Auto)
THEN (FLemma `geo-add-length-between` [-1] THENA Auto)
THEN (Assert b\_a\_c1' BY
Auto)
THEN FLemma `geo-add-length-between` [-1]
THEN Auto)
Home
Index