Step
*
1
of Lemma
adjacent-right-angles-supplementary
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. c-b-d
7. a ≠ b
8. Rabc
⊢ abc ≅a abd
BY
{ ((gSymmetricPoint ⌜b⌝ ⌜a⌝ `a\''⋅ THEN D -1)
THEN (Assert a-b-a' BY
(D 0 THEN Auto))
THEN Using [`x',⌜a'⌝; `y',⌜b⌝; `z',⌜c⌝] (BLemma `geo-cong-angle-transitivity`)⋅
THEN Auto) }
1
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. c-b-d
7. a ≠ b
8. Rabc
9. a' : Point
10. a_b_a'
11. ab ≅ ba'
12. a-b-a'
⊢ abc ≅a a'bc
2
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. c-b-d
7. a ≠ b
8. Rabc
9. a' : Point
10. a_b_a'
11. ab ≅ ba'
12. a-b-a'
⊢ a'bc ≅a abd
Latex:
Latex:
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. c-b-d
7. a \mneq{} b
8. Rabc
\mvdash{} abc \mcong{}\msuba{} abd
By
Latex:
((gSymmetricPoint \mkleeneopen{}b\mkleeneclose{} \mkleeneopen{}a\mkleeneclose{} `a\mbackslash{}''\mcdot{} THEN D -1)
THEN (Assert a-b-a' BY
(D 0 THEN Auto))
THEN Using [`x',\mkleeneopen{}a'\mkleeneclose{}; `y',\mkleeneopen{}b\mkleeneclose{}; `z',\mkleeneopen{}c\mkleeneclose{}] (BLemma `geo-cong-angle-transitivity`)\mcdot{}
THEN Auto)
Home
Index