Nuprl Lemma : adjacent-right-angles-supplementary

e:EuclideanPlane. ∀a,b,c,d:Point.  (c-b-d  a ≠  (Rabc ⇐⇒ abc ≅a abd))


Proof




Definitions occuring in Statement :  geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane right-angle: Rabc geo-strict-between: a-b-c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: rev_implies:  Q basic-geometry: BasicGeometry exists: x:A. B[x] geo-midpoint: a=m=b geo-strict-between: a-b-c cand: c∧ B right-angle: Rabc uiff: uiff(P;Q) basic-geometry-: BasicGeometry- geo-cong-angle: abc ≅a xyz geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False select: L[n] cons: [a b] subtract: m
Lemmas referenced :  right-angle_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-cong-angle_wf geo-sep_wf geo-strict-between_wf geo-point_wf symmetric-point-construction geo-sep-sym geo-congruent-symmetry geo-congruent-sep geo-strict-between-sep2 geo-strict-between-sep3 geo-cong-angle-transitivity geo-midpoint_wf geo-congruent-refl geo-congruent-iff-length geo-length-flip geo-right-angles-congruent geo-five-segment' vertical-angles-congruent geo-strict-between-sym geo-between-symmetry geo-construction-unicity geo-inner-three-segment geo-congruent_functionality geo-eq_weakening geo-between_functionality geo-strict-between-implies-between geo-between-outer-trans geo-between-exchange4 symmetric-point-unicity geo-midpoint-symmetry geo-colinear-is-colinear-set geo-between-implies-colinear length_of_cons_lemma istype-void length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than right-angle-colinear geo-between-sep right-angle-symmetry
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule because_Cache inhabitedIsType dependent_functionElimination independent_functionElimination productElimination rename equalityTransitivity equalitySymmetry isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt natural_numberEquality unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt productIsType

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (c-b-d  {}\mRightarrow{}  a  \mneq{}  b  {}\mRightarrow{}  (Rabc  \mLeftarrow{}{}\mRightarrow{}  abc  \mcong{}\msuba{}  abd))



Date html generated: 2019_10_16-PM-01_53_01
Last ObjectModification: 2019_08_20-PM-01_36_40

Theory : euclidean!plane!geometry


Home Index