Nuprl Lemma : geo-construction-unicity

e:BasicGeometry-. ∀[Q,A,X,Y:Point].  (X ≡ Y) supposing (AY ≅ AX and Q_A_X and Q_A_Y and Q ≠ A)


Proof




Definitions occuring in Statement :  basic-geometry-: BasicGeometry- geo-eq: a ≡ b geo-congruent: ab ≅ cd geo-between: a_b_c geo-sep: a ≠ b geo-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  prop: guard: {T} subtype_rel: A ⊆B false: False implies:  Q not: ¬A geo-eq: a ≡ b uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  geo-congruence-identity-sym geo-five-segment geo-congruent-refl geo-point_wf geo-between_wf geo-congruent_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry-_wf subtype_rel_transitivity basic-geometry--subtype geo-sep_wf geo-three-segment geo-congruent-symmetry
Rules used in proof :  voidElimination equalitySymmetry equalityTransitivity isect_memberEquality independent_isectElimination instantiate hypothesis applyEquality isectElimination extract_by_obid because_Cache hypothesisEquality thin dependent_functionElimination lambdaEquality sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:BasicGeometry-.  \mforall{}[Q,A,X,Y:Point].    (X  \mequiv{}  Y)  supposing  (AY  \00D0  AX  and  Q\_A\_X  and  Q\_A\_Y  and  Q  \mneq{}  A)



Date html generated: 2017_10_02-PM-04_51_05
Last ObjectModification: 2017_08_05-AM-08_42_08

Theory : euclidean!plane!geometry


Home Index