Nuprl Lemma : geo-congruent_wf
∀[g:GeometryPrimitives]. ∀[a,b,c,d:Point].  (ab ≅ cd ∈ ℙ)
Proof
Definitions occuring in Statement : 
geo-congruent: ab ≅ cd
, 
geo-primitives: GeometryPrimitives
, 
geo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
or: P ∨ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
subtype_rel: A ⊆r B
, 
record-select: r.x
, 
record+: record+, 
geo-point: Point
, 
geo-gt-prim: ab>cd)
, 
geo-length-sep: ab # cd)
, 
geo-congruent: ab ≅ cd
, 
geo-primitives: GeometryPrimitives
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
geo-primitives_wf, 
not_wf, 
istype-atom, 
top_wf, 
record-select_wf, 
subtype_rel_self
Rules used in proof : 
universeIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
inhabitedIsType, 
axiomEquality, 
hypothesisEquality, 
unionEquality, 
equalitySymmetry, 
equalityTransitivity, 
lambdaEquality_alt, 
cumulativity, 
functionEquality, 
universeEquality, 
isectElimination, 
extract_by_obid, 
instantiate, 
tokenEquality, 
applyEquality, 
hypothesis, 
thin, 
dependentIntersectionEqElimination, 
dependentIntersectionElimination, 
sqequalRule, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[g:GeometryPrimitives].  \mforall{}[a,b,c,d:Point].    (ab  \mcong{}  cd  \mmember{}  \mBbbP{})
Date html generated:
2019_10_29-AM-09_12_23
Last ObjectModification:
2019_10_25-PM-01_27_10
Theory : euclidean!plane!geometry
Home
Index