Nuprl Lemma : geo-sep-sym
∀e:EuclideanPlane. ∀a,b:Point.  (a ≠ b ⇒ b ≠ a)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane, 
geo-sep: a ≠ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
euclidean-plane: EuclideanPlane, 
implies: P ⇒ Q, 
sq_stable: SqStable(P), 
and: P ∧ Q, 
squash: ↓T
Lemmas referenced : 
basic-geo-sep-sym, 
euclidean-plane_wf, 
sq_stable__geo-axioms
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
productElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.    (a  \mneq{}  b  {}\mRightarrow{}  b  \mneq{}  a)
Date html generated:
2017_10_02-PM-03_28_04
Last ObjectModification:
2017_09_29-AM-11_33_50
Theory : euclidean!plane!geometry
Home
Index