Nuprl Lemma : geo-sep-sym

e:EuclideanPlane. ∀a,b:Point.  (a ≠  b ≠ a)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T euclidean-plane: EuclideanPlane implies:  Q sq_stable: SqStable(P) and: P ∧ Q squash: T
Lemmas referenced :  basic-geo-sep-sym euclidean-plane_wf sq_stable__geo-axioms
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis independent_functionElimination productElimination sqequalRule imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.    (a  \mneq{}  b  {}\mRightarrow{}  b  \mneq{}  a)



Date html generated: 2017_10_02-PM-03_28_04
Last ObjectModification: 2017_09_29-AM-11_33_50

Theory : euclidean!plane!geometry


Home Index