Nuprl Lemma : euclidean-plane_wf

EuclideanPlane ∈ 𝕌'


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane member: t ∈ T universe: Type
Definitions unfolded in proof :  prop: subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T euclidean-plane: EuclideanPlane
Lemmas referenced :  euclidean-plane-structure-subtype euclidean-plane-structure_wf
Rules used in proof :  applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution cumulativity hypothesis extract_by_obid introduction cut setEquality computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
EuclideanPlane  \mmember{}  \mBbbU{}'



Date html generated: 2019_10_29-AM-09_13_21
Last ObjectModification: 2019_10_25-PM-00_10_04

Theory : euclidean!plane!geometry


Home Index