Nuprl Lemma : euclidean-plane_wf
EuclideanPlane ∈ 𝕌'
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
euclidean-plane: EuclideanPlane
Lemmas referenced : 
euclidean-plane-structure-subtype, 
euclidean-plane-structure_wf
Rules used in proof : 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
cumulativity, 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
setEquality, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
EuclideanPlane  \mmember{}  \mBbbU{}'
Date html generated:
2019_10_29-AM-09_13_21
Last ObjectModification:
2019_10_25-PM-00_10_04
Theory : euclidean!plane!geometry
Home
Index