Nuprl Lemma : right-angle_wf
∀[e:GeometryPrimitives]. ∀[a,b,c:Point].  (Rabc ∈ ℙ)
Proof
Definitions occuring in Statement : 
right-angle: Rabc
, 
geo-primitives: GeometryPrimitives
, 
geo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
right-angle: Rabc
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
geo-primitives_wf, 
geo-congruent_wf, 
geo-midpoint_wf, 
geo-point_wf, 
all_wf
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
functionEquality, 
lambdaEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[e:GeometryPrimitives].  \mforall{}[a,b,c:Point].    (Rabc  \mmember{}  \mBbbP{})
Date html generated:
2018_05_22-AM-11_52_13
Last ObjectModification:
2018_05_21-AM-01_12_59
Theory : euclidean!plane!geometry
Home
Index