Nuprl Lemma : geo-eq_weakening

[e:EuclideanPlane]. ∀[a,b:Point].  a ≡ supposing b ∈ Point


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-eq: a ≡ b geo-point: Point uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  guard: {T} false: False implies:  Q not: ¬A geo-eq: a ≡ b subtype_rel: A ⊆B prop: uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] cand: c∧ B and: P ∧ Q all: x:A. B[x]
Lemmas referenced :  geo-point_wf equal_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-sep_wf geo-eq_wf euclidean-plane-axioms
Rules used in proof :  voidElimination equalityTransitivity isect_memberEquality independent_isectElimination instantiate dependent_functionElimination lambdaEquality sqequalRule because_Cache applyEquality hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid applyLambdaEquality equalitySymmetry hyp_replacement thin hypothesis cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination lambdaFormation productElimination

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a,b:Point].    a  \mequiv{}  b  supposing  a  =  b



Date html generated: 2017_10_02-PM-03_28_03
Last ObjectModification: 2017_08_07-AM-10_01_08

Theory : euclidean!plane!geometry


Home Index