Nuprl Lemma : geo-between-sep
∀g:EuclideanPlane. ∀a,b,x:Point.  (a_x_b 
⇒ a ≠ x 
⇒ a ≠ b)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-between: a_b_c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-ge-sep, 
geo-between-implies-ge, 
geo-point_wf, 
geo-between_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
subtype_rel_transitivity, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-sep_wf
Rules used in proof : 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,x:Point.    (a\_x\_b  {}\mRightarrow{}  a  \mneq{}  x  {}\mRightarrow{}  a  \mneq{}  b)
Date html generated:
2017_10_02-PM-03_28_58
Last ObjectModification:
2017_08_04-PM-09_35_13
Theory : euclidean!plane!geometry
Home
Index