Nuprl Lemma : geo-between-sep

g:EuclideanPlane. ∀a,b,x:Point.  (a_x_b  a ≠  a ≠ b)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  geo-ge-sep geo-between-implies-ge geo-point_wf geo-between_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-sep_wf
Rules used in proof :  independent_functionElimination dependent_functionElimination because_Cache sqequalRule independent_isectElimination instantiate hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,x:Point.    (a\_x\_b  {}\mRightarrow{}  a  \mneq{}  x  {}\mRightarrow{}  a  \mneq{}  b)



Date html generated: 2017_10_02-PM-03_28_58
Last ObjectModification: 2017_08_04-PM-09_35_13

Theory : euclidean!plane!geometry


Home Index