Nuprl Lemma : geo-ge-sep

g:EuclideanPlane. ∀a,b,c,d:Point.  (cd ≥ ab  a ≠  c ≠ d)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-ge: cd ≥ ab geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  cand: c∧ B and: P ∧ Q member: t ∈ T all: x:A. B[x]
Lemmas referenced :  euclidean-plane_wf euclidean-plane-axioms
Rules used in proof :  productElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (cd  \mgeq{}  ab  {}\mRightarrow{}  a  \mneq{}  b  {}\mRightarrow{}  c  \mneq{}  d)



Date html generated: 2017_10_02-PM-03_27_49
Last ObjectModification: 2017_08_08-PM-00_35_30

Theory : euclidean!plane!geometry


Home Index