Nuprl Lemma : geo-five-segment'

e:EuclideanPlane
  ∀[a,b,c,A,B,C:Point].
    (∀d,D:Point.  (cd ≅ CD) supposing (bd ≅ BD and ad ≅ AD)) supposing (bc ≅ BC and ab ≅ AB and A_B_C and a_b_c and a ≠ \000Cb)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-congruent: ab ≅ cd geo-between: a_b_c geo-sep: a ≠ b geo-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  guard: {T} subtype_rel: A ⊆B prop: member: t ∈ T uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  geo-sep_wf geo-between_wf geo-point_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-congruent_wf geo-five-segment
Rules used in proof :  because_Cache sqequalRule instantiate applyEquality hypothesis independent_isectElimination isectElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[a,b,c,A,B,C:Point].
        (\mforall{}d,D:Point.    (cd  \00D0  CD)  supposing  (bd  \00D0  BD  and  ad  \00D0  AD))  supposing 
              (bc  \00D0  BC  and 
              ab  \00D0  AB  and 
              A\_B\_C  and 
              a\_b\_c  and 
              a  \mneq{}  b)



Date html generated: 2017_10_02-PM-03_28_54
Last ObjectModification: 2017_08_04-PM-09_32_41

Theory : euclidean!plane!geometry


Home Index