Nuprl Lemma : right-angle-colinear

e:BasicGeometry. ∀a,b,c,a':Point.  (Rabc  a ≠  Colinear(b;a;a')  Ra'bc)


Proof




Definitions occuring in Statement :  right-angle: Rabc basic-geometry: BasicGeometry geo-colinear: Colinear(a;b;c) geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B basic-geometry: BasicGeometry uall: [x:A]. B[x] prop: member: t ∈ T right-angle: Rabc implies:  Q all: x:A. B[x] uiff: uiff(P;Q) subtract: m cons: [a b] select: L[n] true: True squash: T less_than: a < b not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} top: Top l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) and: P ∧ Q geo-midpoint: a=m=b
Lemmas referenced :  geo-point_wf right-angle_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-sep_wf geo-colinear_wf geo-midpoint_wf geo-length-flip geo-congruent-iff-length lelt_wf false_wf length_of_nil_lemma length_of_cons_lemma geo-colinear-is-colinear-set geo-colinear-congruence1
Rules used in proof :  sqequalRule independent_isectElimination instantiate applyEquality rename setElimination because_Cache hypothesis hypothesisEquality thin isectElimination extract_by_obid introduction cut sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution levelHypothesis equalitySymmetry equalityTransitivity baseClosed imageMemberEquality independent_pairFormation natural_numberEquality dependent_set_memberEquality voidEquality voidElimination isect_memberEquality independent_functionElimination dependent_functionElimination productElimination addLevel

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,a':Point.    (Rabc  {}\mRightarrow{}  a  \mneq{}  b  {}\mRightarrow{}  Colinear(b;a;a')  {}\mRightarrow{}  Ra'bc)



Date html generated: 2017_10_02-PM-06_41_18
Last ObjectModification: 2017_08_05-PM-04_47_47

Theory : euclidean!plane!geometry


Home Index