Nuprl Lemma : geo-colinear-congruence1

e:BasicGeometry. ∀A,B,C,P,Q:Point.  (A ≠  Colinear(A;B;C)  AP ≅ AQ  BP ≅ BQ  CP ≅ CQ)


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry geo-colinear: Colinear(a;b;c) geo-congruent: ab ≅ cd geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  basic-geometry: BasicGeometry uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q all: x:A. B[x] cand: c∧ B and: P ∧ Q geo-five-seg-compressed: FSC(a;b;c;d  a';b';c';d') geo-cong-tri: Cong3(abc,a'b'c')
Lemmas referenced :  geo-point_wf geo-sep_wf geo-colinear_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-congruent_wf geo-congruent-refl geo-fsc-ap
Rules used in proof :  rename setElimination because_Cache sqequalRule independent_isectElimination instantiate hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_pairFormation dependent_functionElimination independent_functionElimination

Latex:
\mforall{}e:BasicGeometry.  \mforall{}A,B,C,P,Q:Point.    (A  \mneq{}  B  {}\mRightarrow{}  Colinear(A;B;C)  {}\mRightarrow{}  AP  \00D0  AQ  {}\mRightarrow{}  BP  \00D0  BQ  {}\mRightarrow{}  CP  \00D0  CQ)



Date html generated: 2017_10_02-PM-06_31_50
Last ObjectModification: 2017_08_05-PM-04_42_46

Theory : euclidean!plane!geometry


Home Index