Nuprl Lemma : geo-colinear-congruence1
∀e:BasicGeometry. ∀A,B,C,P,Q:Point.  (A ≠ B 
⇒ Colinear(A;B;C) 
⇒ AP ≅ AQ 
⇒ BP ≅ BQ 
⇒ CP ≅ CQ)
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
geo-colinear: Colinear(a;b;c)
, 
geo-congruent: ab ≅ cd
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
basic-geometry: BasicGeometry
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
geo-five-seg-compressed: FSC(a;b;c;d  a';b';c';d')
, 
geo-cong-tri: Cong3(abc,a'b'c')
Lemmas referenced : 
geo-point_wf, 
geo-sep_wf, 
geo-colinear_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-congruent_wf, 
geo-congruent-refl, 
geo-fsc-ap
Rules used in proof : 
rename, 
setElimination, 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_pairFormation, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}e:BasicGeometry.  \mforall{}A,B,C,P,Q:Point.    (A  \mneq{}  B  {}\mRightarrow{}  Colinear(A;B;C)  {}\mRightarrow{}  AP  \00D0  AQ  {}\mRightarrow{}  BP  \00D0  BQ  {}\mRightarrow{}  CP  \00D0  CQ)
Date html generated:
2017_10_02-PM-06_31_50
Last ObjectModification:
2017_08_05-PM-04_42_46
Theory : euclidean!plane!geometry
Home
Index