Nuprl Lemma : symmetric-point-construction

e:BasicGeometry. ∀a,p:Point.  (a ≠  (∃p':Point. p=a=p'))


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry geo-midpoint: a=m=b geo-sep: a ≠ b geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] basic-geometry: BasicGeometry subtype_rel: A ⊆B prop: guard: {T} uimplies: supposing a euclidean-plane: EuclideanPlane sq_stable: SqStable(P) squash: T
Lemmas referenced :  sympoint_wf geo-sep_wf geo-midpoint_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf sq_stable__midpoint
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt dependent_pairFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality_alt hypothesis universeIsType applyEquality because_Cache sqequalRule lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry instantiate independent_isectElimination dependent_functionElimination independent_functionElimination imageMemberEquality baseClosed imageElimination equalityIsType1

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,p:Point.    (a  \mneq{}  p  {}\mRightarrow{}  (\mexists{}p':Point.  p=a=p'))



Date html generated: 2019_10_16-PM-01_15_09
Last ObjectModification: 2018_11_08-PM-01_16_32

Theory : euclidean!plane!geometry


Home Index