Nuprl Lemma : sympoint_wf

[e:EuclideanPlane]. ∀[a:Point]. ∀[p:{p:Point| a ≠ p} ].  (SymmetricPoint(a;p) ∈ {p':Point| p=a=p'} )


Proof




Definitions occuring in Statement :  sympoint: SymmetricPoint(a;p) euclidean-plane: EuclideanPlane geo-midpoint: a=m=b geo-sep: a ≠ b geo-point: Point uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sympoint: SymmetricPoint(a;p) euclidean-plane: EuclideanPlane all: x:A. B[x] and: P ∧ Q cand: c∧ B sq_stable: SqStable(P) implies:  Q squash: T subtype_rel: A ⊆B prop: guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] geo-midpoint: a=m=b
Lemmas referenced :  geo-SCO_wf sq_stable__geo-sep geo-between-trivial2 geo-sep_wf geo-between_wf set_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-midpoint_wf geo-congruent_wf geo-congruent-flip geo-congruent-symmetry geo-congruent-transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis dependent_functionElimination hypothesisEquality independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination independent_pairFormation dependent_set_memberEquality productEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry instantiate independent_isectElimination lambdaEquality isect_memberEquality productElimination setEquality functionEquality

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a:Point].  \mforall{}[p:\{p:Point|  a  \mneq{}  p\}  ].    (SymmetricPoint(a;p)  \mmember{}  \{p':Point|  p=a=p'\}  \000C)



Date html generated: 2018_05_22-AM-11_53_35
Last ObjectModification: 2018_03_30-PM-04_52_27

Theory : euclidean!plane!geometry


Home Index