Nuprl Lemma : sympoint_wf
∀[e:EuclideanPlane]. ∀[a:Point]. ∀[p:{p:Point| a ≠ p} ].  (SymmetricPoint(a;p) ∈ {p':Point| p=a=p'} )
Proof
Definitions occuring in Statement : 
sympoint: SymmetricPoint(a;p)
, 
euclidean-plane: EuclideanPlane
, 
geo-midpoint: a=m=b
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sympoint: SymmetricPoint(a;p)
, 
euclidean-plane: EuclideanPlane
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
geo-midpoint: a=m=b
Lemmas referenced : 
geo-SCO_wf, 
sq_stable__geo-sep, 
geo-between-trivial2, 
geo-sep_wf, 
geo-between_wf, 
set_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-midpoint_wf, 
geo-congruent_wf, 
geo-congruent-flip, 
geo-congruent-symmetry, 
geo-congruent-transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
productEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
productElimination, 
setEquality, 
functionEquality
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a:Point].  \mforall{}[p:\{p:Point|  a  \mneq{}  p\}  ].    (SymmetricPoint(a;p)  \mmember{}  \{p':Point|  p=a=p'\}  \000C)
Date html generated:
2018_05_22-AM-11_53_35
Last ObjectModification:
2018_03_30-PM-04_52_27
Theory : euclidean!plane!geometry
Home
Index