Nuprl Lemma : geo-SCO_wf

[g:EuclideanPlaneStructure]
  ∀c,d,a:Point. ∀b:{b:Point| b ≠ a ∧ c_b_d} .  (SCO(a;b;c;d) ∈ {u:Point| cu ≅ cd ∧ a_b_u ∧ (b ≠  b ≠ u)} )


Proof




Definitions occuring in Statement :  geo-SCO: SCO(a;b;c;d) euclidean-plane-structure: EuclideanPlaneStructure geo-congruent: ab ≅ cd geo-between: a_b_c geo-sep: a ≠ b geo-point: Point uall: [x:A]. B[x] all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] geo-SCO: SCO(a;b;c;d) and: P ∧ Q subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  geo-SC_wf geo-sep_wf geo-between_wf set_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation setElimination thin rename sqequalRule extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality dependent_functionElimination dependent_set_memberEquality hypothesis productEquality applyEquality because_Cache lambdaEquality axiomEquality equalityTransitivity equalitySymmetry setEquality

Latex:
\mforall{}[g:EuclideanPlaneStructure]
    \mforall{}c,d,a:Point.  \mforall{}b:\{b:Point|  b  \mneq{}  a  \mwedge{}  c\_b\_d\}  .
        (SCO(a;b;c;d)  \mmember{}  \{u:Point|  cu  \mcong{}  cd  \mwedge{}  a\_b\_u  \mwedge{}  (b  \mneq{}  d  {}\mRightarrow{}  b  \mneq{}  u)\}  )



Date html generated: 2018_05_22-AM-11_52_46
Last ObjectModification: 2018_03_30-PM-04_36_52

Theory : euclidean!plane!geometry


Home Index