Step
*
2
of Lemma
basic-geo-axioms-imply
1. g : EuclideanPlaneStructure
2. ∀a,b,c,d:Point. (ab>cd
⇒ ab ≥ cd)
3. ∀a,b,c:Point. (ba>ac
⇒ b # c)
4. ∀a,b,c:Point. bc ≥ aa
5. ∀a,b,c,d,e,f:Point. (ab>cd
⇒ cd ≥ ef
⇒ ab>ef)
6. ∀a,b,c,d,e,f:Point. (ab ≥ cd
⇒ cd>ef
⇒ ab>ef)
7. ∀a,b,c:Point. (B(abc)
⇒ b # c
⇒ ac>ab)
8. ∀a,b,c:Point. (a leftof bc
⇒ b leftof ca)
9. ∀a,b,c:Point. (a leftof bc
⇒ b # c)
10. ∀a,b,c,d:Point. (B(abd)
⇒ B(bcd)
⇒ B(abc))
11. ∀a,b,c,d,A,B,C,D:Point. (a # b
⇒ B(abc)
⇒ B(ABC)
⇒ ab ≅ AB
⇒ bc ≅ BC
⇒ ad ≅ AD
⇒ bd ≅ BD
⇒ cd ≅ CD)
12. ∀a,b,c,x,y:Point. (ax ≅ ay
⇒ bx ≅ by
⇒ cx ≅ cy
⇒ x # y
⇒ (¬a # bc))
13. ∀a,b,x,y,z:Point. (x leftof ab
⇒ y leftof ab
⇒ B(xzy)
⇒ z leftof ab)
14. ∀a,b,c,y:Point. (a # bc
⇒ y # b
⇒ (¬y # ab)
⇒ y # bc)
15. ∀a:Point. a ≡ a
16. a : Point
17. b : Point
⊢ ab ≅ ba
BY
{ ((Unfold `geo-congruent` 0 THEN D 0) THEN Auto) }
1
1. g : EuclideanPlaneStructure
2. ∀a,b,c,d:Point. (ab>cd
⇒ ab ≥ cd)
3. ∀a,b,c:Point. (ba>ac
⇒ b # c)
4. ∀a,b,c:Point. bc ≥ aa
5. ∀a,b,c,d,e,f:Point. (ab>cd
⇒ cd ≥ ef
⇒ ab>ef)
6. ∀a,b,c,d,e,f:Point. (ab ≥ cd
⇒ cd>ef
⇒ ab>ef)
7. ∀a,b,c:Point. (B(abc)
⇒ b # c
⇒ ac>ab)
8. ∀a,b,c:Point. (a leftof bc
⇒ b leftof ca)
9. ∀a,b,c:Point. (a leftof bc
⇒ b # c)
10. ∀a,b,c,d:Point. (B(abd)
⇒ B(bcd)
⇒ B(abc))
11. ∀a,b,c,d,A,B,C,D:Point. (a # b
⇒ B(abc)
⇒ B(ABC)
⇒ ab ≅ AB
⇒ bc ≅ BC
⇒ ad ≅ AD
⇒ bd ≅ BD
⇒ cd ≅ CD)
12. ∀a,b,c,x,y:Point. (ax ≅ ay
⇒ bx ≅ by
⇒ cx ≅ cy
⇒ x # y
⇒ (¬a # bc))
13. ∀a,b,x,y,z:Point. (x leftof ab
⇒ y leftof ab
⇒ B(xzy)
⇒ z leftof ab)
14. ∀a,b,c,y:Point. (a # bc
⇒ y # b
⇒ (¬y # ab)
⇒ y # bc)
15. ∀a:Point. a ≡ a
16. a : Point
17. b : Point
18. ab # ba)
⊢ False
Latex:
Latex:
1. g : EuclideanPlaneStructure
2. \mforall{}a,b,c,d:Point. (ab>cd {}\mRightarrow{} ab \mgeq{} cd)
3. \mforall{}a,b,c:Point. (ba>ac {}\mRightarrow{} b \# c)
4. \mforall{}a,b,c:Point. bc \mgeq{} aa
5. \mforall{}a,b,c,d,e,f:Point. (ab>cd {}\mRightarrow{} cd \mgeq{} ef {}\mRightarrow{} ab>ef)
6. \mforall{}a,b,c,d,e,f:Point. (ab \mgeq{} cd {}\mRightarrow{} cd>ef {}\mRightarrow{} ab>ef)
7. \mforall{}a,b,c:Point. (B(abc) {}\mRightarrow{} b \# c {}\mRightarrow{} ac>ab)
8. \mforall{}a,b,c:Point. (a leftof bc {}\mRightarrow{} b leftof ca)
9. \mforall{}a,b,c:Point. (a leftof bc {}\mRightarrow{} b \# c)
10. \mforall{}a,b,c,d:Point. (B(abd) {}\mRightarrow{} B(bcd) {}\mRightarrow{} B(abc))
11. \mforall{}a,b,c,d,A,B,C,D:Point.
(a \# b {}\mRightarrow{} B(abc) {}\mRightarrow{} B(ABC) {}\mRightarrow{} ab \mcong{} AB {}\mRightarrow{} bc \mcong{} BC {}\mRightarrow{} ad \mcong{} AD {}\mRightarrow{} bd \mcong{} BD {}\mRightarrow{} cd \mcong{} CD)
12. \mforall{}a,b,c,x,y:Point. (ax \mcong{} ay {}\mRightarrow{} bx \mcong{} by {}\mRightarrow{} cx \mcong{} cy {}\mRightarrow{} x \# y {}\mRightarrow{} (\mneg{}a \# bc))
13. \mforall{}a,b,x,y,z:Point. (x leftof ab {}\mRightarrow{} y leftof ab {}\mRightarrow{} B(xzy) {}\mRightarrow{} z leftof ab)
14. \mforall{}a,b,c,y:Point. (a \# bc {}\mRightarrow{} y \# b {}\mRightarrow{} (\mneg{}y \# ab) {}\mRightarrow{} y \# bc)
15. \mforall{}a:Point. a \mequiv{} a
16. a : Point
17. b : Point
\mvdash{} ab \mcong{} ba
By
Latex:
((Unfold `geo-congruent` 0 THEN D 0) THEN Auto)
Home
Index