Step * 1 1 1 of Lemma center-on-circle-overlap


1. EuclideanPlane
2. Point
3. Point
4. Point
5. a ≠ b
6. |bc| ≤ |ab| |ab|
7. SCS(a;b;b;c) ∈ {v:Point| bv ≅ bc ∧ (v_b_SCO(a;b;b;c) ∧ Colinear(a;b;v)) ∧ (b ≠  v ≠ SCO(a;b;b;c))} 
8. ab ≅ ab
9. bc ≥ bb
10. bc ≅ bSCS(a;b;b;c)
11. b ≠ c
12. out(b aSCS(a;b;b;c))
⊢ ab ≥ aSCS(a;b;b;c)
BY
(MoveToConcl (-1)
   THEN MoveToConcl (-2)
   THEN (GenConcl ⌜SCS(a;b;b;c)
                   v
                   ∈ {v:Point| bv ≅ bc ∧ (v_b_SCO(a;b;b;c) ∧ Colinear(a;b;v)) ∧ (b ≠  v ≠ SCO(a;b;b;c))} ⌝⋅
         THENA Auto
         )
   THEN Thin (-1)
   THEN -1
   THEN Auto) }

1
1. EuclideanPlane
2. Point
3. Point
4. Point
5. a ≠ b
6. |bc| ≤ |ab| |ab|
7. SCS(a;b;b;c) ∈ {v:Point| bv ≅ bc ∧ (v_b_SCO(a;b;b;c) ∧ Colinear(a;b;v)) ∧ (b ≠  v ≠ SCO(a;b;b;c))} 
8. ab ≅ ab
9. bc ≥ bb
10. b ≠ c
11. Point
12. bv ≅ bc
13. v_b_SCO(a;b;b;c)
14. Colinear(a;b;v)
15. bc ≅ bv
16. out(b av)
17. v ≠ SCO(a;b;b;c)
⊢ ab ≥ av


Latex:


Latex:

1.  e  :  EuclideanPlane
2.  a  :  Point
3.  b  :  Point
4.  c  :  Point
5.  a  \mneq{}  b
6.  |bc|  \mleq{}  |ab|  +  |ab|
7.  SCS(a;b;b;c)  \mmember{}  \{v:Point| 
                                      bv  \mcong{}  bc  \mwedge{}  (v\_b\_SCO(a;b;b;c)  \mwedge{}  Colinear(a;b;v))  \mwedge{}  (b  \mneq{}  c  {}\mRightarrow{}  v  \mneq{}  SCO(a;b;b;c))\} 
8.  ab  \mcong{}  ab
9.  bc  \mgeq{}  bb
10.  bc  \mcong{}  bSCS(a;b;b;c)
11.  b  \mneq{}  c
12.  out(b  aSCS(a;b;b;c))
\mvdash{}  ab  \mgeq{}  aSCS(a;b;b;c)


By


Latex:
(MoveToConcl  (-1)
  THEN  MoveToConcl  (-2)
  THEN  (GenConcl  \mkleeneopen{}SCS(a;b;b;c)  =  v\mkleeneclose{}\mcdot{}  THENA  Auto)
  THEN  Thin  (-1)
  THEN  D  -1
  THEN  Auto)




Home Index