Step * of Lemma congruence-preserves-between_symmetric-points2

e:BasicGeometry. ∀a,b,c,b',c':Point.
  (a_b_c  Colinear(a;c;c')  ab ≅ ab'  ac ≅ ac'  b'-a-b  (a_b'_c' ∨ a_b_c'))
BY
(Auto
   THEN (gProlong ⌜a⌝⌜b'⌝`y'⌜b⌝⌜c⌝⋅ THENA Auto)
   THEN (InstLemma `geo-three-segment` [⌜e⌝;⌜a⌝;⌜b⌝;⌜c⌝;⌜a⌝;⌜b'⌝;⌜y⌝]⋅ THENA Auto)
   THEN (Assert c_a_y BY
               Auto)
   THEN (Assert c ≠ BY
               Auto)
   THEN (InstLemma  `geo-sep-or` [⌜e⌝;⌜y⌝;⌜c⌝;⌜c'⌝]⋅ THENA Auto)
   THEN -1) }

1
1. BasicGeometry
2. Point
3. Point
4. Point
5. b' Point
6. c' Point
7. a_b_c
8. Colinear(a;c;c')
9. ab ≅ ab'
10. ac ≅ ac'
11. b'-a-b
12. Point
13. a_b'_y ∧ b'y ≅ bc
14. ac ≅ ay
15. c_a_y
16. c ≠ y
17. y ≠ c'
⊢ a_b'_c' ∨ a_b_c'

2
1. BasicGeometry
2. Point
3. Point
4. Point
5. b' Point
6. c' Point
7. a_b_c
8. Colinear(a;c;c')
9. ab ≅ ab'
10. ac ≅ ac'
11. b'-a-b
12. Point
13. a_b'_y ∧ b'y ≅ bc
14. ac ≅ ay
15. c_a_y
16. c ≠ y
17. c ≠ c'
⊢ a_b'_c' ∨ a_b_c'


Latex:


Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,b',c':Point.
    (a\_b\_c  {}\mRightarrow{}  Colinear(a;c;c')  {}\mRightarrow{}  ab  \mcong{}  ab'  {}\mRightarrow{}  ac  \mcong{}  ac'  {}\mRightarrow{}  b'-a-b  {}\mRightarrow{}  (a\_b'\_c'  \mvee{}  a\_b\_c'))


By


Latex:
(Auto
  THEN  (gProlong  \mkleeneopen{}a\mkleeneclose{}\mkleeneopen{}b'\mkleeneclose{}`y'\mkleeneopen{}b\mkleeneclose{}\mkleeneopen{}c\mkleeneclose{}\mcdot{}  THENA  Auto)
  THEN  (InstLemma  `geo-three-segment`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b'\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  (Assert  c\_a\_y  BY
                          Auto)
  THEN  (Assert  c  \mneq{}  y  BY
                          Auto)
  THEN  (InstLemma    `geo-sep-or`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}c'\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  D  -1)




Home Index