Step
*
1
of Lemma
eu-eq_dist-axiomsB
1. g : EuclideanPlane
2. ∀a,b,c:Point. (a # bc
⇒ |ac| < |ab| + |bc|)
3. a : Point
4. b : Point
5. c : Point
6. d : Point
7. Dbet(g;a;b;c)
8. Dbet(g;a;c;d)
⊢ Dbet(g;b;c;d)
BY
{ (((InstLemma `Dbet-to-between` [⌜g⌝;⌜a⌝;⌜b⌝;⌜c⌝]⋅ THEN Auto)
THEN InstLemma `Dbet-to-between` [⌜g⌝;⌜a⌝;⌜c⌝;⌜d⌝]⋅
THEN Auto)
THEN (Assert B(bcd) BY
EAuto 1)
THEN FLemma `Dbet-iff-between` [-1]
THEN Auto) }
Latex:
Latex:
1. g : EuclideanPlane
2. \mforall{}a,b,c:Point. (a \# bc {}\mRightarrow{} |ac| < |ab| + |bc|)
3. a : Point
4. b : Point
5. c : Point
6. d : Point
7. Dbet(g;a;b;c)
8. Dbet(g;a;c;d)
\mvdash{} Dbet(g;b;c;d)
By
Latex:
(((InstLemma `Dbet-to-between` [\mkleeneopen{}g\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}]\mcdot{} THEN Auto)
THEN InstLemma `Dbet-to-between` [\mkleeneopen{}g\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}d\mkleeneclose{}]\mcdot{}
THEN Auto)
THEN (Assert B(bcd) BY
EAuto 1)
THEN FLemma `Dbet-iff-between` [-1]
THEN Auto)
Home
Index