Nuprl Lemma : euclid-Prop3-ext
∀e:EuclideanPlane. ∀A:Point. ∀B:{B:Point| A ≠ B} . ∀C1:Point. ∀C2:{C2:Point| C1 ≠ C2} .
  (|C1C2| < |AB| 
⇒ (∃E:Point [(A_E_B ∧ AE ≅ C1C2)]))
Proof
Definitions occuring in Statement : 
geo-lt: p < q
, 
geo-length: |s|
, 
geo-mk-seg: ab
, 
euclidean-plane: EuclideanPlane
, 
geo-congruent: ab ≅ cd
, 
geo-between: a_b_c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
geo-extend-exists, 
euclid-Prop3, 
member: t ∈ T
Lemmas referenced : 
euclid-Prop3, 
geo-extend-exists
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}A:Point.  \mforall{}B:\{B:Point|  A  \mneq{}  B\}  .  \mforall{}C1:Point.  \mforall{}C2:\{C2:Point|  C1  \mneq{}  C2\}  .
    (|C1C2|  <  |AB|  {}\mRightarrow{}  (\mexists{}E:Point  [(A\_E\_B  \mwedge{}  AE  \mcong{}  C1C2)]))
Date html generated:
2019_10_16-PM-01_42_01
Last ObjectModification:
2019_08_27-AM-08_38_56
Theory : euclidean!plane!geometry
Home
Index