Step
*
2
of Lemma
geo-axioms-imply
1. g : GeometryPrimitives
2. ∀a,b,c,d:Point. (ab>cd
⇒ ab ≥ cd)
3. ∀a,b,c:Point. (ba>ac
⇒ b # c)
4. ∀a,b,c:Point. bc ≥ aa
5. ∀a,b,c,d,e,f:Point. (ab>cd
⇒ cd ≥ ef
⇒ ab>ef)
6. ∀a,b,c,d,e,f:Point. (ab ≥ cd
⇒ cd>ef
⇒ ab>ef)
7. ∀a,b,c:Point. (B(abc)
⇒ b # c
⇒ ac>ab)
8. ∀a,b,c:Point. (a leftof bc
⇒ b leftof ca)
9. ∀a,b,c:Point. (a leftof bc
⇒ b # c)
10. ∀a,b,c,d:Point. (B(abd)
⇒ B(bcd)
⇒ B(abc))
11. ∀a,b,c,d,A,B,C,D:Point. (a # b
⇒ B(abc)
⇒ B(ABC)
⇒ ab ≅ AB
⇒ bc ≅ BC
⇒ ad ≅ AD
⇒ bd ≅ BD
⇒ cd ≅ CD)
12. ∀a,b,c,x,y:Point. (ax ≅ ay
⇒ bx ≅ by
⇒ cx ≅ cy
⇒ x # y
⇒ (¬a # bc))
13. ∀a,b,x,y,z:Point. (x leftof ab
⇒ y leftof ab
⇒ B(xzy)
⇒ z leftof ab)
14. ∀a,b,c,y:Point. (a # bc
⇒ y # b
⇒ (¬y # ab)
⇒ y # bc)
15. ∀a,b,c,d,x,y:Point. (ab ≅ cd
⇒ cd>xy
⇒ ab>xy)
16. ∀a:Point. (¬a # a)
17. ∀a,b:Point. ba ≥ ab
18. ∀a,b,c,d:Point. (ab>cd
⇒ ba>cd)
19. ∀a,b,c,d:Point. (ab>cd
⇒ ab>dc)
20. a : Point
21. b : Point
22. c : Point
23. ¬a # b
⊢ ac ≅ cb
BY
{ ((Assert ¬b # a BY
(ParallelLast THEN ParallelLast THEN Auto))
THEN ((Assert ∀x:Point. xa ≥ bx BY
((Auto THEN InstLemma `geo-axiom-contrapositive` [⌜g⌝;⌜x⌝;⌜b⌝;⌜a⌝]⋅ THEN Auto) THEN D 0 THEN Auto))
THEN (Assert ∀x:Point. xb ≥ ax BY
((Auto THEN InstLemma `geo-axiom-contrapositive` [⌜g⌝;⌜x⌝;⌜a⌝;⌜b⌝]⋅ THEN Auto)
THEN D 0
THEN Auto))
)
THEN Unfold `geo-congruent` 0
THEN (D 0 THENA Auto)) }
1
1. g : GeometryPrimitives
2. ∀a,b,c,d:Point. (ab>cd
⇒ ab ≥ cd)
3. ∀a,b,c:Point. (ba>ac
⇒ b # c)
4. ∀a,b,c:Point. bc ≥ aa
5. ∀a,b,c,d,e,f:Point. (ab>cd
⇒ cd ≥ ef
⇒ ab>ef)
6. ∀a,b,c,d,e,f:Point. (ab ≥ cd
⇒ cd>ef
⇒ ab>ef)
7. ∀a,b,c:Point. (B(abc)
⇒ b # c
⇒ ac>ab)
8. ∀a,b,c:Point. (a leftof bc
⇒ b leftof ca)
9. ∀a,b,c:Point. (a leftof bc
⇒ b # c)
10. ∀a,b,c,d:Point. (B(abd)
⇒ B(bcd)
⇒ B(abc))
11. ∀a,b,c,d,A,B,C,D:Point. (a # b
⇒ B(abc)
⇒ B(ABC)
⇒ ab ≅ AB
⇒ bc ≅ BC
⇒ ad ≅ AD
⇒ bd ≅ BD
⇒ cd ≅ CD)
12. ∀a,b,c,x,y:Point. (ax ≅ ay
⇒ bx ≅ by
⇒ cx ≅ cy
⇒ x # y
⇒ (¬a # bc))
13. ∀a,b,x,y,z:Point. (x leftof ab
⇒ y leftof ab
⇒ B(xzy)
⇒ z leftof ab)
14. ∀a,b,c,y:Point. (a # bc
⇒ y # b
⇒ (¬y # ab)
⇒ y # bc)
15. ∀a,b,c,d,x,y:Point. (ab ≅ cd
⇒ cd>xy
⇒ ab>xy)
16. ∀a:Point. (¬a # a)
17. ∀a,b:Point. ba ≥ ab
18. ∀a,b,c,d:Point. (ab>cd
⇒ ba>cd)
19. ∀a,b,c,d:Point. (ab>cd
⇒ ab>dc)
20. a : Point
21. b : Point
22. c : Point
23. ¬a # b
24. ¬b # a
25. ∀x:Point. xa ≥ bx
26. ∀x:Point. xb ≥ ax
27. ac # cb)
⊢ False
Latex:
Latex:
1. g : GeometryPrimitives
2. \mforall{}a,b,c,d:Point. (ab>cd {}\mRightarrow{} ab \mgeq{} cd)
3. \mforall{}a,b,c:Point. (ba>ac {}\mRightarrow{} b \# c)
4. \mforall{}a,b,c:Point. bc \mgeq{} aa
5. \mforall{}a,b,c,d,e,f:Point. (ab>cd {}\mRightarrow{} cd \mgeq{} ef {}\mRightarrow{} ab>ef)
6. \mforall{}a,b,c,d,e,f:Point. (ab \mgeq{} cd {}\mRightarrow{} cd>ef {}\mRightarrow{} ab>ef)
7. \mforall{}a,b,c:Point. (B(abc) {}\mRightarrow{} b \# c {}\mRightarrow{} ac>ab)
8. \mforall{}a,b,c:Point. (a leftof bc {}\mRightarrow{} b leftof ca)
9. \mforall{}a,b,c:Point. (a leftof bc {}\mRightarrow{} b \# c)
10. \mforall{}a,b,c,d:Point. (B(abd) {}\mRightarrow{} B(bcd) {}\mRightarrow{} B(abc))
11. \mforall{}a,b,c,d,A,B,C,D:Point.
(a \# b {}\mRightarrow{} B(abc) {}\mRightarrow{} B(ABC) {}\mRightarrow{} ab \mcong{} AB {}\mRightarrow{} bc \mcong{} BC {}\mRightarrow{} ad \mcong{} AD {}\mRightarrow{} bd \mcong{} BD {}\mRightarrow{} cd \mcong{} CD)
12. \mforall{}a,b,c,x,y:Point. (ax \mcong{} ay {}\mRightarrow{} bx \mcong{} by {}\mRightarrow{} cx \mcong{} cy {}\mRightarrow{} x \# y {}\mRightarrow{} (\mneg{}a \# bc))
13. \mforall{}a,b,x,y,z:Point. (x leftof ab {}\mRightarrow{} y leftof ab {}\mRightarrow{} B(xzy) {}\mRightarrow{} z leftof ab)
14. \mforall{}a,b,c,y:Point. (a \# bc {}\mRightarrow{} y \# b {}\mRightarrow{} (\mneg{}y \# ab) {}\mRightarrow{} y \# bc)
15. \mforall{}a,b,c,d,x,y:Point. (ab \mcong{} cd {}\mRightarrow{} cd>xy {}\mRightarrow{} ab>xy)
16. \mforall{}a:Point. (\mneg{}a \# a)
17. \mforall{}a,b:Point. ba \mgeq{} ab
18. \mforall{}a,b,c,d:Point. (ab>cd {}\mRightarrow{} ba>cd)
19. \mforall{}a,b,c,d:Point. (ab>cd {}\mRightarrow{} ab>dc)
20. a : Point
21. b : Point
22. c : Point
23. \mneg{}a \# b
\mvdash{} ac \mcong{} cb
By
Latex:
((Assert \mneg{}b \# a BY
(ParallelLast THEN ParallelLast THEN Auto))
THEN ((Assert \mforall{}x:Point. xa \mgeq{} bx BY
((Auto THEN InstLemma `geo-axiom-contrapositive` [\mkleeneopen{}g\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{}]\mcdot{} THEN Auto)
THEN D 0
THEN Auto))
THEN (Assert \mforall{}x:Point. xb \mgeq{} ax BY
((Auto THEN InstLemma `geo-axiom-contrapositive` [\mkleeneopen{}g\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{}]\mcdot{} THEN Auto)
THEN D 0
THEN Auto))
)
THEN Unfold `geo-congruent` 0
THEN (D 0 THENA Auto))
Home
Index