Step
*
2
1
of Lemma
geo-axioms-imply
1. g : GeometryPrimitives
2. ∀a,b,c,d:Point.  (ab>cd 
⇒ ab ≥ cd)
3. ∀a,b,c:Point.  (ba>ac 
⇒ b # c)
4. ∀a,b,c:Point.  bc ≥ aa
5. ∀a,b,c,d,e,f:Point.  (ab>cd 
⇒ cd ≥ ef 
⇒ ab>ef)
6. ∀a,b,c,d,e,f:Point.  (ab ≥ cd 
⇒ cd>ef 
⇒ ab>ef)
7. ∀a,b,c:Point.  (B(abc) 
⇒ b # c 
⇒ ac>ab)
8. ∀a,b,c:Point.  (a leftof bc 
⇒ b leftof ca)
9. ∀a,b,c:Point.  (a leftof bc 
⇒ b # c)
10. ∀a,b,c,d:Point.  (B(abd) 
⇒ B(bcd) 
⇒ B(abc))
11. ∀a,b,c,d,A,B,C,D:Point.  (a # b 
⇒ B(abc) 
⇒ B(ABC) 
⇒ ab ≅ AB 
⇒ bc ≅ BC 
⇒ ad ≅ AD 
⇒ bd ≅ BD 
⇒ cd ≅ CD)
12. ∀a,b,c,x,y:Point.  (ax ≅ ay 
⇒ bx ≅ by 
⇒ cx ≅ cy 
⇒ x # y 
⇒ (¬a # bc))
13. ∀a,b,x,y,z:Point.  (x leftof ab 
⇒ y leftof ab 
⇒ B(xzy) 
⇒ z leftof ab)
14. ∀a,b,c,y:Point.  (a # bc 
⇒ y # b 
⇒ (¬y # ab) 
⇒ y # bc)
15. ∀a,b,c,d,x,y:Point.  (ab ≅ cd 
⇒ cd>xy 
⇒ ab>xy)
16. ∀a:Point. (¬a # a)
17. ∀a,b:Point.  ba ≥ ab
18. ∀a,b,c,d:Point.  (ab>cd 
⇒ ba>cd)
19. ∀a,b,c,d:Point.  (ab>cd 
⇒ ab>dc)
20. a : Point
21. b : Point
22. c : Point
23. ¬a # b
24. ¬b # a
25. ∀x:Point. xa ≥ bx
26. ∀x:Point. xb ≥ ax
27. ac # cb)
⊢ False
BY
{ (D -1 THEN MoveToConcl (-1) THEN Fold `not` 0 THEN Fold `geo-ge` 0) }
1
1. g : GeometryPrimitives
2. ∀a,b,c,d:Point.  (ab>cd 
⇒ ab ≥ cd)
3. ∀a,b,c:Point.  (ba>ac 
⇒ b # c)
4. ∀a,b,c:Point.  bc ≥ aa
5. ∀a,b,c,d,e,f:Point.  (ab>cd 
⇒ cd ≥ ef 
⇒ ab>ef)
6. ∀a,b,c,d,e,f:Point.  (ab ≥ cd 
⇒ cd>ef 
⇒ ab>ef)
7. ∀a,b,c:Point.  (B(abc) 
⇒ b # c 
⇒ ac>ab)
8. ∀a,b,c:Point.  (a leftof bc 
⇒ b leftof ca)
9. ∀a,b,c:Point.  (a leftof bc 
⇒ b # c)
10. ∀a,b,c,d:Point.  (B(abd) 
⇒ B(bcd) 
⇒ B(abc))
11. ∀a,b,c,d,A,B,C,D:Point.  (a # b 
⇒ B(abc) 
⇒ B(ABC) 
⇒ ab ≅ AB 
⇒ bc ≅ BC 
⇒ ad ≅ AD 
⇒ bd ≅ BD 
⇒ cd ≅ CD)
12. ∀a,b,c,x,y:Point.  (ax ≅ ay 
⇒ bx ≅ by 
⇒ cx ≅ cy 
⇒ x # y 
⇒ (¬a # bc))
13. ∀a,b,x,y,z:Point.  (x leftof ab 
⇒ y leftof ab 
⇒ B(xzy) 
⇒ z leftof ab)
14. ∀a,b,c,y:Point.  (a # bc 
⇒ y # b 
⇒ (¬y # ab) 
⇒ y # bc)
15. ∀a,b,c,d,x,y:Point.  (ab ≅ cd 
⇒ cd>xy 
⇒ ab>xy)
16. ∀a:Point. (¬a # a)
17. ∀a,b:Point.  ba ≥ ab
18. ∀a,b,c,d:Point.  (ab>cd 
⇒ ba>cd)
19. ∀a,b,c,d:Point.  (ab>cd 
⇒ ab>dc)
20. a : Point
21. b : Point
22. c : Point
23. ¬a # b
24. ¬b # a
25. ∀x:Point. xa ≥ bx
26. ∀x:Point. xb ≥ ax
⊢ ac ≥ cb
2
1. g : GeometryPrimitives
2. ∀a,b,c,d:Point.  (ab>cd 
⇒ ab ≥ cd)
3. ∀a,b,c:Point.  (ba>ac 
⇒ b # c)
4. ∀a,b,c:Point.  bc ≥ aa
5. ∀a,b,c,d,e,f:Point.  (ab>cd 
⇒ cd ≥ ef 
⇒ ab>ef)
6. ∀a,b,c,d,e,f:Point.  (ab ≥ cd 
⇒ cd>ef 
⇒ ab>ef)
7. ∀a,b,c:Point.  (B(abc) 
⇒ b # c 
⇒ ac>ab)
8. ∀a,b,c:Point.  (a leftof bc 
⇒ b leftof ca)
9. ∀a,b,c:Point.  (a leftof bc 
⇒ b # c)
10. ∀a,b,c,d:Point.  (B(abd) 
⇒ B(bcd) 
⇒ B(abc))
11. ∀a,b,c,d,A,B,C,D:Point.  (a # b 
⇒ B(abc) 
⇒ B(ABC) 
⇒ ab ≅ AB 
⇒ bc ≅ BC 
⇒ ad ≅ AD 
⇒ bd ≅ BD 
⇒ cd ≅ CD)
12. ∀a,b,c,x,y:Point.  (ax ≅ ay 
⇒ bx ≅ by 
⇒ cx ≅ cy 
⇒ x # y 
⇒ (¬a # bc))
13. ∀a,b,x,y,z:Point.  (x leftof ab 
⇒ y leftof ab 
⇒ B(xzy) 
⇒ z leftof ab)
14. ∀a,b,c,y:Point.  (a # bc 
⇒ y # b 
⇒ (¬y # ab) 
⇒ y # bc)
15. ∀a,b,c,d,x,y:Point.  (ab ≅ cd 
⇒ cd>xy 
⇒ ab>xy)
16. ∀a:Point. (¬a # a)
17. ∀a,b:Point.  ba ≥ ab
18. ∀a,b,c,d:Point.  (ab>cd 
⇒ ba>cd)
19. ∀a,b,c,d:Point.  (ab>cd 
⇒ ab>dc)
20. a : Point
21. b : Point
22. c : Point
23. ¬a # b
24. ¬b # a
25. ∀x:Point. xa ≥ bx
26. ∀x:Point. xb ≥ ax
⊢ cb ≥ ac
Latex:
Latex:
1.  g  :  GeometryPrimitives
2.  \mforall{}a,b,c,d:Point.    (ab>cd  {}\mRightarrow{}  ab  \mgeq{}  cd)
3.  \mforall{}a,b,c:Point.    (ba>ac  {}\mRightarrow{}  b  \#  c)
4.  \mforall{}a,b,c:Point.    bc  \mgeq{}  aa
5.  \mforall{}a,b,c,d,e,f:Point.    (ab>cd  {}\mRightarrow{}  cd  \mgeq{}  ef  {}\mRightarrow{}  ab>ef)
6.  \mforall{}a,b,c,d,e,f:Point.    (ab  \mgeq{}  cd  {}\mRightarrow{}  cd>ef  {}\mRightarrow{}  ab>ef)
7.  \mforall{}a,b,c:Point.    (B(abc)  {}\mRightarrow{}  b  \#  c  {}\mRightarrow{}  ac>ab)
8.  \mforall{}a,b,c:Point.    (a  leftof  bc  {}\mRightarrow{}  b  leftof  ca)
9.  \mforall{}a,b,c:Point.    (a  leftof  bc  {}\mRightarrow{}  b  \#  c)
10.  \mforall{}a,b,c,d:Point.    (B(abd)  {}\mRightarrow{}  B(bcd)  {}\mRightarrow{}  B(abc))
11.  \mforall{}a,b,c,d,A,B,C,D:Point.
            (a  \#  b  {}\mRightarrow{}  B(abc)  {}\mRightarrow{}  B(ABC)  {}\mRightarrow{}  ab  \mcong{}  AB  {}\mRightarrow{}  bc  \mcong{}  BC  {}\mRightarrow{}  ad  \mcong{}  AD  {}\mRightarrow{}  bd  \mcong{}  BD  {}\mRightarrow{}  cd  \mcong{}  CD)
12.  \mforall{}a,b,c,x,y:Point.    (ax  \mcong{}  ay  {}\mRightarrow{}  bx  \mcong{}  by  {}\mRightarrow{}  cx  \mcong{}  cy  {}\mRightarrow{}  x  \#  y  {}\mRightarrow{}  (\mneg{}a  \#  bc))
13.  \mforall{}a,b,x,y,z:Point.    (x  leftof  ab  {}\mRightarrow{}  y  leftof  ab  {}\mRightarrow{}  B(xzy)  {}\mRightarrow{}  z  leftof  ab)
14.  \mforall{}a,b,c,y:Point.    (a  \#  bc  {}\mRightarrow{}  y  \#  b  {}\mRightarrow{}  (\mneg{}y  \#  ab)  {}\mRightarrow{}  y  \#  bc)
15.  \mforall{}a,b,c,d,x,y:Point.    (ab  \mcong{}  cd  {}\mRightarrow{}  cd>xy  {}\mRightarrow{}  ab>xy)
16.  \mforall{}a:Point.  (\mneg{}a  \#  a)
17.  \mforall{}a,b:Point.    ba  \mgeq{}  ab
18.  \mforall{}a,b,c,d:Point.    (ab>cd  {}\mRightarrow{}  ba>cd)
19.  \mforall{}a,b,c,d:Point.    (ab>cd  {}\mRightarrow{}  ab>dc)
20.  a  :  Point
21.  b  :  Point
22.  c  :  Point
23.  \mneg{}a  \#  b
24.  \mneg{}b  \#  a
25.  \mforall{}x:Point.  xa  \mgeq{}  bx
26.  \mforall{}x:Point.  xb  \mgeq{}  ax
27.  ac  \#  cb)
\mvdash{}  False
By
Latex:
(D  -1  THEN  MoveToConcl  (-1)  THEN  Fold  `not`  0  THEN  Fold  `geo-ge`  0)
Home
Index