Step * of Lemma geo-colinear-cons

e:BasicGeometry. ∀L:Point List. ∀A:Point.
  (geo-colinear-set(e; [A L]) ⇐⇒ geo-colinear-set(e; L) ∧ (∀B∈L.(∀C∈L.Colinear(A;B;C))))
BY
((UnivCD THENA Auto) THEN Unfold `geo-colinear-set` THEN RWO "l_all_cons" THEN Auto) }

1
1. BasicGeometry
2. Point List
3. Point
4. (∀B∈[A L].(∀C∈[A L].Colinear(A;B;C)))
5. (∀A@0∈L.(∀B∈[A L].(∀C∈[A L].Colinear(A@0;B;C))))
⊢ (∀A∈L.(∀B∈L.(∀C∈L.Colinear(A;B;C))))

2
1. BasicGeometry
2. Point List
3. Point
4. (∀B∈[A L].(∀C∈[A L].Colinear(A;B;C)))
5. (∀A@0∈L.(∀B∈[A L].(∀C∈[A L].Colinear(A@0;B;C))))
⊢ (∀B∈L.(∀C∈L.Colinear(A;B;C)))

3
1. BasicGeometry
2. Point List
3. Point
4. (∀A∈L.(∀B∈L.(∀C∈L.Colinear(A;B;C))))
5. (∀B∈L.(∀C∈L.Colinear(A;B;C)))
⊢ (∀B∈[A L].(∀C∈[A L].Colinear(A;B;C)))

4
1. BasicGeometry
2. Point List
3. Point
4. (∀A∈L.(∀B∈L.(∀C∈L.Colinear(A;B;C))))
5. (∀B∈L.(∀C∈L.Colinear(A;B;C)))
⊢ (∀A@0∈L.(∀B∈[A L].(∀C∈[A L].Colinear(A@0;B;C))))


Latex:


Latex:
\mforall{}e:BasicGeometry.  \mforall{}L:Point  List.  \mforall{}A:Point.
    (geo-colinear-set(e;  [A  /  L])  \mLeftarrow{}{}\mRightarrow{}  geo-colinear-set(e;  L)  \mwedge{}  (\mforall{}B\mmember{}L.(\mforall{}C\mmember{}L.Colinear(A;B;C))))


By


Latex:
((UnivCD  THENA  Auto)  THEN  Unfold  `geo-colinear-set`  0  THEN  RWO  "l\_all\_cons"  0  THEN  Auto)




Home Index