Nuprl Lemma : geo-colinear-cons
∀e:BasicGeometry. ∀L:Point List. ∀A:Point.
  (geo-colinear-set(e; [A / L]) 
⇐⇒ geo-colinear-set(e; L) ∧ (∀B∈L.(∀C∈L.Colinear(A;B;C))))
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
geo-colinear: Colinear(a;b;c)
, 
geo-point: Point
, 
l_all: (∀x∈L.P[x])
, 
cons: [a / b]
, 
list: T List
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
rev_implies: P 
⇐ Q
, 
so_apply: x[s]
, 
basic-geometry: BasicGeometry
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
subtract: n - m
, 
cons: [a / b]
, 
select: L[n]
, 
true: True
, 
squash: ↓T
, 
less_than: a < b
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
top: Top
, 
l_all: (∀x∈L.P[x])
Lemmas referenced : 
list_wf, 
iff_wf, 
l_all_cons, 
geo-colinear_wf, 
l_member_wf, 
cons_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-point_wf, 
l_all_wf2, 
l_all_functionality, 
l_all_iff, 
geo-colinear-same, 
all_wf, 
lelt_wf, 
false_wf, 
length_of_nil_lemma, 
length_of_cons_lemma, 
geo-colinear-is-colinear-set, 
geo-colinear-permute
Rules used in proof : 
independent_functionElimination, 
impliesFunctionality, 
addLevel, 
dependent_functionElimination, 
setEquality, 
rename, 
setElimination, 
lambdaEquality, 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
productEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
independent_pairFormation, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
promote_hyp, 
functionEquality, 
levelHypothesis, 
allFunctionality, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
dependent_set_memberEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality
Latex:
\mforall{}e:BasicGeometry.  \mforall{}L:Point  List.  \mforall{}A:Point.
    (geo-colinear-set(e;  [A  /  L])  \mLeftarrow{}{}\mRightarrow{}  geo-colinear-set(e;  L)  \mwedge{}  (\mforall{}B\mmember{}L.(\mforall{}C\mmember{}L.Colinear(A;B;C))))
Date html generated:
2017_10_02-PM-06_20_21
Last ObjectModification:
2017_08_05-PM-04_14_46
Theory : euclidean!plane!geometry
Home
Index