Nuprl Lemma : l_all_functionality

[T:Type]. ∀L:T List. ∀P,Q:T ⟶ ℙ.  ((∀x:T. ((x ∈ L)  (P[x] ⇐⇒ Q[x])))  {(∀x∈L.P[x]) ⇐⇒ (∀x∈L.Q[x])})


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) l_member: (x ∈ l) list: List uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q guard: {T} iff: ⇐⇒ Q and: P ∧ Q l_all: (∀x∈L.P[x]) member: t ∈ T int_seg: {i..j-} uimplies: supposing a sq_stable: SqStable(P) lelt: i ≤ j < k squash: T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q
Lemmas referenced :  list_wf iff_wf all_wf l_member_wf l_all_wf length_wf int_seg_wf select_member sq_stable__le select_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation sqequalHypSubstitution cut hypothesis dependent_functionElimination thin hypothesisEquality lemma_by_obid isectElimination cumulativity setElimination rename independent_isectElimination natural_numberEquality independent_functionElimination introduction productElimination sqequalRule imageMemberEquality baseClosed imageElimination lambdaEquality applyEquality setEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}P,Q:T  {}\mrightarrow{}  \mBbbP{}.    ((\mforall{}x:T.  ((x  \mmember{}  L)  {}\mRightarrow{}  (P[x]  \mLeftarrow{}{}\mRightarrow{}  Q[x])))  {}\mRightarrow{}  \{(\mforall{}x\mmember{}L.P[x])  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x\mmember{}L.Q[x])\})



Date html generated: 2016_05_14-AM-06_40_39
Last ObjectModification: 2016_01_14-PM-08_19_53

Theory : list_0


Home Index