Step * 1 1 2 of Lemma geo-colinear-implies


1. BasicGeometry-
2. BasicGeometryAxioms(e)
3. Point
4. Point
5. Point
6. ¬bc
7. ¬(((¬ab>ac) ∧ bc>ac)) ∧ bc))
8. ¬(((¬ca>cb) ∧ ab>cb)) ∧ ab))
9. ∀a,b,c,d:Point.  (ab>cd  cd>ab))
10. ab>ac
11. ¬bc>ba
12. ca>ba
⊢ False
BY
((InstHyp [⌜a⌝;⌜b⌝;⌜a⌝;⌜c⌝(-4)⋅ THEN Auto)
   THEN (Assert ac>ab BY
               (InstLemma  `geo-gt-prim-symmetry` [⌜e⌝;⌜c⌝;⌜a⌝;⌜b⌝;⌜a⌝]⋅ THEN Auto))
   THEN Auto) }


Latex:


Latex:

1.  e  :  BasicGeometry-
2.  BasicGeometryAxioms(e)
3.  a  :  Point
4.  b  :  Point
5.  c  :  Point
6.  \mneg{}a  \#  bc
7.  \mneg{}(((\mneg{}ab>ac)  \mwedge{}  (\mneg{}bc>ac))  \mwedge{}  (\mneg{}a  \#  bc))
8.  \mneg{}(((\mneg{}ca>cb)  \mwedge{}  (\mneg{}ab>cb))  \mwedge{}  (\mneg{}c  \#  ab))
9.  \mforall{}a,b,c,d:Point.    (ab>cd  {}\mRightarrow{}  (\mneg{}cd>ab))
10.  ab>ac
11.  \mneg{}bc>ba
12.  ca>ba
\mvdash{}  False


By


Latex:
((InstHyp  [\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}]  (-4)\mcdot{}  THEN  Auto)
  THEN  (Assert  ac>ab  BY
                          (InstLemma    `geo-gt-prim-symmetry`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{}]\mcdot{}  THEN  Auto))
  THEN  Auto)




Home Index