Step * 1 of Lemma geo-le_witness


1. BasicGeometry
2. {p:Point| O_X_p}  ⊆Length
3. {p:Point| O_X_p} 
4. {p:Point| O_X_p} 
5. X_p_q
⊢ ∃p',q':{p:Point| O_X_p} ((p' p ∈ Length) ∧ (q' q ∈ Length) ∧ X_p'_q')
BY
(D With ⌜p⌝  THEN Try (Trivial)) }

1
1. BasicGeometry
2. {p:Point| O_X_p}  ⊆Length
3. {p:Point| O_X_p} 
4. {p:Point| O_X_p} 
5. X_p_q
⊢ ∃q':{p:Point| O_X_p} ((p p ∈ Length) ∧ (q' q ∈ Length) ∧ X_p_q')

2
.....wf..... 
1. BasicGeometry
2. {p:Point| O_X_p}  ⊆Length
3. {p:Point| O_X_p} 
4. {p:Point| O_X_p} 
5. X_p_q
6. p' {p:Point| O_X_p} 
⊢ istype(∃q':{p:Point| O_X_p} ((p' p ∈ Length) ∧ (q' q ∈ Length) ∧ X_p'_q'))


Latex:


Latex:

1.  e  :  BasicGeometry
2.  \{p:Point|  O\_X\_p\}    \msubseteq{}r  Length
3.  p  :  \{p:Point|  O\_X\_p\} 
4.  q  :  \{p:Point|  O\_X\_p\} 
5.  X\_p\_q
\mvdash{}  \mexists{}p',q':\{p:Point|  O\_X\_p\}  .  ((p'  =  p)  \mwedge{}  (q'  =  q)  \mwedge{}  X\_p'\_q')


By


Latex:
(D  0  With  \mkleeneopen{}p\mkleeneclose{}    THEN  Try  (Trivial))




Home Index