Nuprl Lemma : geo-le_witness
∀[e:BasicGeometry]. ∀[p,q:{p:Point| O_X_p} ].  Ax ∈ p ≤ q supposing X_p_q
Proof
Definitions occuring in Statement : 
geo-le: p ≤ q
, 
basic-geometry: BasicGeometry
, 
geo-X: X
, 
geo-O: O
, 
geo-between: a_b_c
, 
geo-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
axiom: Ax
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
geo-le: p ≤ q
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
basic-geometry: BasicGeometry
, 
euclidean-plane: EuclideanPlane
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
and: P ∧ Q
Lemmas referenced : 
subtype-geo-length-type, 
geo-between_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-X_wf, 
geo-point_wf, 
geo-O_wf, 
equal_wf, 
geo-length-type_wf, 
member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
applyEquality, 
instantiate, 
independent_isectElimination, 
dependent_functionElimination, 
setElimination, 
rename, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
setIsType, 
because_Cache, 
dependent_pairFormation_alt, 
setEquality, 
lambdaEquality, 
productEquality, 
independent_pairFormation, 
dependent_pairFormation, 
productIsType, 
equalityIsType1
Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[p,q:\{p:Point|  O\_X\_p\}  ].    Ax  \mmember{}  p  \mleq{}  q  supposing  X\_p\_q
Date html generated:
2019_10_16-PM-01_16_18
Last ObjectModification:
2018_11_08-PM-02_12_35
Theory : euclidean!plane!geometry
Home
Index